
Introduction to Custom API
Apps
 Lesson 1: Anatomy of an API App
 Lesson 2: Fundamentals of Web API
 Lesson 3: Hello API App World
 Lesson 4: Debugging API Apps

This is a sample module from QuickLearn Training’s course: Cloud-based Integration Using Azure App Service

http://www.quicklearn.com/class.aspx?class=AZPI

Lesson: Anatomy of an API App

In this lesson, you will learn about…
 The components that make up an API App

Outside the scope of this course

Azure App Service

API APPS
Easily build and consume

APIs in the cloud

WEB APPS
Web apps that scale with your

business

LOGIC APPS
Automate business process

across SaaS and on-premises

MOBILE APPS
Build Mobile apps for any

device

Implementation Agnostic Definition
 RESTful services that optionally expose

tool-consumable metadata, which are
hosted in API App containers in Azure

What Are API Apps?

.NET Based Implementation Definition
 Web API projects with a NuGet package

reference to Swashbuckle for swagger
metadata generation, which have an
enhanced publish experience that can
target an Azure API App container as a
publish destination

What Are API Apps?

Swagger
 Swagger is a standard metadata format (represented as a

JSON object) for describing resources exposed by a
RESTful API

 Plays a similar role for RESTful services to the role played
by WSDL for SOAP-based services

What is Swagger?

Swashbuckle
 Swashbuckle is a .NET library that generates swagger

metadata by examining the final shape of a Web API

What is Swashbuckle?

Prerequisites
 Visual Studio 2013 or later
 Community Edition is sufficient

 Azure SDK
 Adds the Azure API App Template
 Adds the API App publish target

Requirements for Creating a Custom API App

Creating a Custom API App
1. Create a new Web Application in Visual Studio
 Select the API App sub-template

2. Write the implementation of your logic
3. Publish the API App to a new or existing Azure API App

container

Creating a Custom API App

Examining the Azure API App Template

Contents of an Azure API App Project

Standard Web API Starter
 WebApiConfig.cs
 ValuesController.cs

Swashbuckle Config
 SwaggerConfig.cs

Referenced Packages
 Swashbuckle
 Swagger metadata generator for .NET

 Microsoft ASP.NET Web API
 Web API Libraries

 Application Insights for Web Applications (Optional)
 Application Insights client for providing application telemetry

Package References of an Azure API App Project

Exploring the Swashbuckle Configuration

SwaggerConfig.cs
 Contains commented

documentation and
sample code inline to
guide you in emitting
appropriate swagger
metadata

API App Publish Target
 Used to copy the files for your API App to a new or

existing API App Container in Azure
 Accessible through the Publish… project context menu

option

Publishing an Azure API App

Publishing an Azure API App

Lesson 2: Fundamentals of Web API

In this lesson, you will learn about…
 How the key components of a Web API application come

together to build out C# based HTTP APIs

Released with ASP.NET MVC 4.0
 Borrowed the model/controller components of MVC
 Web API controllers had their own base class

 Borrowed convention-based development style
 Not explicitly bound to MVC 4.0

History of Web API

Routes
 Map inbound HTTP requests to methods that handle those

requests
 Defined through class/method-level attributes

Controllers
 Classes implementing API logic within methods designed to

handle incoming HTTP requests
 May derive from ApiController*

Models
 Classes that model the shape of API inputs/outputs

Key Components of a Web API Application

public class ValuesController
: ApiController

{

}

Creating a Controller (Code Example)

ApiController is
the base class of API

Controllers

[RoutePrefix("api/values")]
public class ValuesController : ApiController
{

[Route("{id}")]
public IHttpActionResult GetValue(int id)
{
}

}

Configuring Routes (Code Example)
RoutePrefix attribute

sets prefix for all routes in
controller.

Route attribute specifies
the template for an

action’s relative route

Options for Returning Web API Results
 Return POCO directly
 Pro: Easy to set up and understand
 Con: HttpResponseException must be used to signal non-

200 responses
 Return HttpResponseMessage
 Pro: Can return any value / status code using

Request.CreateResponse extension method
 Con: Response type metadata cannot be auto-generated

Returning Results

Options for Returning Web API Results
 Return IHttpActionResult
 Pro: Provides asynchronous factory method for creating

HttpResponseMessage instance, generated through helper
methods on ApiController

 Con: Response type metadata cannot be auto-generated, not
generated by Azure App Service SDK extension methods

Returning Results

 BadRequest
 Conflict
 Content
 Created
 CreatedAtRoute
 InternalServerError
 Json

 NotFound
 Ok
 Redirect
 RedirectToRoute
 StatusCode
 Unauthorized

ApiController Extension Methods for Results

ApiController has been extended to return
results as IHttpActionResult instances through
these extension methods:

This extension method on
ApiController returns
IHttpActionResult

corresponding to HTTP Status
code 404

[RoutePrefix("api/values")]
public class ValuesController : ApiController
{

[Route("{id}")]
public IHttpActionResult GetValue(int id)
{

var values = new string[] { "value1", "value2" };

if (id < 0 || id > values.GetUpperBound(0))
return NotFound();

return Ok<string>(values[id]);
}

}

Implementing Actions (Code Example)

IHttpActionResult
is the return type

Some extension
methods provide
generics to return

typed payload

HTTP GET Requests
 GET is the verb web browsers use by default when typing a

URL
 For RESTful services it would be used to return a given

resource without side effects (allowing safe caching of result)

Examining HTTP Requests
 Requests can be examined by using F12 tools in browser
 Requests can be examined by using Network/HTTP traffic

monitoring tool (e.g., Fiddler, Wireshark)

Testing HTTP GET Requests Against an API

The following process occurs within the application:
1. Routes defined on controllers and actions are loaded on

application startup
2. Incoming requests are evaluated against the route table
3. The first method with a matching route is executed
 Incoming parameters are read from request query string

and/or body and mapped to an instance of a model class
4. The method result is returned to the caller
 May undergo translation to acceptable format (e.g., JSON,

XML)

What Does Web API Do With My Request?

GET /api/values/1 HTTP/1.1
Accept: text/html, application/xhtml+xml, */*
Accept-Language: en-US,en;q=0.7,el;q=0.3
User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64;
Trident/7.0; Touch; rv:11.0) like Gecko
Accept-Encoding: gzip, deflate
Host: localhost:1710
DNT: 1
Connection: Keep-Alive
Cache-Control: no-cache

Calling an Action – Raw HTTP Request

HTTP/1.1 200 OK
Cache-Control: no-cache
Pragma: no-cache
Content-Type: application/json; charset=utf-8
Expires: -1
Server: Microsoft-IIS/10.0
X-AspNet-Version: 4.0.30319
X-Powered-By: ASP.NET
Date: Thu, 16 Apr 2015 22:40:49 GMT
Content-Length: 8

"value2"

Calling the Action – Raw HTTP Response

REST
 REpresentational State Transfer is an approach to

building an HTTP API
 All RESTful APIs are pure HTTP APIs
 Not all pure HTTP APIs are RESTful

 Web API can be used to build RESTful APIs
 Not all APIs built using Web API are RESTful by design

Is This API RESTful?

RESTful APIs align themselves to HTTP
 URLs – Refers to a resource with which the API can

interact
 HTTP Verbs – Define the desired action against the

resource
 HTTP Status Code – Define the result of the action taken

against the resource

Designing RESTful API Apps

Body includes information
that describes the target

resource

Comparing RESTful and Non-RESTful Approach

POST /Account/Update

{

"account": "1234",

"balance": 123.45

}

PATCH /Account/1234

{

"balance" : 123.45

}

Scenario: As a developer, I need a way to update the
balance on an account

URL is the thing we want to
do, HTTP verb is arbitrary

Exact resource and action is
known within the first line of

the request

Body describes only the
nature of the update

Method-level Attributes Control Matching HTTP
Verbs
 HttpDelete
 HttpGet
 HttpHead
 HttpOptions
 HttpPatch
 HttpPost
 HttpPut

Supporting Multiple HTTP Verbs for RESTful APIs

[RoutePrefix("api/values")]
public class ValuesController : ApiController
{

[Route("{id}")]
[HttpGet]
public IHttpActionResult GetValue(int id)
{

/* Method Body Here */
}

[Route("{id}")]
[HttpPut]
public IHttpActionResult UpdateValue(int id, [FromBody]string value)
{

/* Method Body Here */
}

}

Supporting Multiple HTTP Verbs

HttpGet attribute
ensures this action is

invoked for GET
requests

Here the HttpPut attribute is
used. This is appropriate for a

full update of an existing
resource.

FromBody indicates that the
parameter should be

deserialized out of the HTTP
request body.

Lesson 3: Hello API App World

In this lesson, you will learn about…
 What it takes to build a Hello World API App

Building Hello World involves:
1. Setting up the Project
2. Creating the Model Classes
3. Creating a Controller
4. Defining the Actions
5. Publishing the API App

Building Hello World API App

Setting Up the Project

Create the Project
1. Create a new ASP.NET

Web Application
project

2. Select the Azure API
App template

Logic App designer can natively consume Web APIs
 Cards will show all possible operations
 Operations and parameters may have unfriendly names
 Operations and parameters will lack meaningful

descriptions

Metadata can be added to API Apps to make them
more friendly in the Logic Apps designer
 The T-Rex Metadata Library NuGet package can help

Exposing Functionality to Logic Apps

Introducing the T-Rex Metadata Library

T-Rex Provides .NET
Attributes
 Can be used to decorate

methods/parameters with
designer names and
descriptions

 Can be used to indicate
triggers

T-Rex Provides Swashbuckle
Filters
 Swashbuckle filters change

how swagger metadata is
generated so that it includes
data from .NET attributes

Source Code / Documentation
 https://github.com/nihaue/trex

NuGet Package
 http://www.nuget.org/packages/trex

https://github.com/nihaue/trex
http://www.nuget.org/packages/trex

Setting Up the Project

Enable Metadata
Generation

3. Add the TRex Nuget
Package

4. In SwaggerConfig.cs add
using directive for
TRex.Metadata

5. In SwaggerConfig.cs add
c.ReleaseTheTRex()
inside configure action
parameter of
EnableSwagger method
call

Setting Up the Project

Remove Placeholder
Content

6. Delete the placeholder
ValuesController.cs

Building Hello World involves:
1. Setting up the Project
2. Creating the Model Classes
3. Creating a Controller
4. Defining the Actions
5. Publishing the API App

Building Hello World API App

RESTful APIs revolve around the data
 In Web API, this data is our models
 Defining models first helps get you into a RESTful

mindset rather than RPC mindset

Why Create the Models First?

Creating the Model Classes

Define the Model
1. Add a class to the

Models folder
2. Add relevant properties

in the class

Creating the Model Classes

Decorate the Model Class
3. Add a using directive

for TRex.Metadata
4. Decorate the properties

with the Metadata
attribute (Optional)

Building Hello World involves:
1. Setting up the Project
2. Creating the Model Classes
3. Creating a Controller
4. Defining the Actions
5. Publishing the API App

Building Hello World API App

Creating a Controller

Create the Controller
Class

1. Add an Empty Web API
2 Controller to
Controllers folder

2. Add a RoutePrefix
attribute to define the
base route for any
actions defined inside

Building Hello World involves:
1. Setting up the Project
2. Creating the Model Classes
3. Creating a Controller
4. Defining the Actions
5. Publishing the API App

Building Hello World API App

Defining the Actions

Define an Action
1. Add a using directive

for the Models
namespace

2. Define a new method
that returns one of the
model classes

3. Decorate the method
with the Route attribute
and HttpGet attribute

Defining the Actions

Add Action Metadata
4. Add a using directive

for TRex.Metadata
5. Decorate the action with

the Metadata attribute

Defining the Actions

Implement the Action
6. Write the code necessary

to generate the
appropriate model
instance

Building Hello World involves:
1. Setting up the Project
2. Creating the Model Classes
3. Creating a Controller
4. Defining the Actions
5. Publishing the API App

Building Hello World API App

Web Deploy Can Publish API Apps Directly into an
Azure Hosting Environment
 Web Deploy does not know it is an API App
 Destination must be an API App created in Azure

 Debugging must be explicitly enabled, if desired

“Gotchas” When Publishing API Apps to App Service

Publishing the API App

Publish the API App
1. Right-click the project,

and then click Publish...
2. Choose the Microsoft

Azure API Apps publish
target

Publishing the API App

Publish the API App
3. Select or create API App

hosting container

Publishing the API App

Publish the API App
4. On the Settings tab,

choose the Debug
configuration, if desired

5. Click Publish

What Does My API App Look Like in the Designer?

{
"Text": "Hello",
"GreetedThing": "World"

}

What Is the Raw Result of Execution?

Lesson 4: Debugging API Apps

In this lesson, you will learn about…
 Testing your API App at development time by simulating

inbound requests, intercepting outbound requests, and
debugging logic within your API App

API Apps Deal in HTTP Requests and Responses
 To verify behavior of a deployed API App, you must use

HTTP requests as test inputs

Verifying Deployed API App Behavior

HTTP Request

HTTP Response
API AppClient

Once your API App is accessible externally, you can
simulate requests using:
 Postman
 Used primarily to generate HTTP requests by hand
 https://www.getpostman.com/

 Fiddler Tool
 Used primarily to monitor outgoing HTTP traffic, but can also

generate HTTP requests by hand
 http://www.telerik.com/fiddler

Tools for Replicating HTTP Requests

https://www.getpostman.com/
http://www.telerik.com/fiddler

Some API Apps are Connectors to External HTTP
Resources
 Tools previously identified cannot inspect those calls
 When testing, you may wish to reconfigure your API App

to call a fake HTTP resource that allows inspection of calls

Inspecting HTTP Calls to External Resources

HTTP Request

HTTP Response
API App

HTTP Request

HTTP Response
Client External

Resource

You can use the following tools to fake an external HTTP
resource
 Requestb.in
 Provides randomly generated endpoint on demand
 Logs all requests to the endpoint for inspection
 Allows all HTTP verbs, and responds 200 OK for every inbound request

• Not a good choice if your API App relies on the response
 HttpResponder.com
 Provides vanity endpoint on demand

• Not a good choice if your requests/responses are private
 Logs all requests to the endpoint for inspection
 Allows all HTTP verbs, and responds 200 OK for every inbound request
 Allows customization of JSON and XML responses

Tools for Inspecting Inbound Requests

Using Requestb.in to Examine Requests
1. Browse to http://requestb.in/
2. Click Create a RequestBin
3. Issue HTTP requests to the provided Bin URL
4. Inspect requests by appending ?inspect to the Bin URL

Using Requestb.in to Examine Requests

http://requestb.in/

Using Requestbi.in to Examine API App Outputs

You might also use
requestb.in to examine
API App outputs

1. Include API App in a
Logic App

2. Add HTTP action
3. Configure HTTP action

to POST the outputs to a
Requestb.in

Demo: Generating and Examining HTTP Requests

In this demonstration, you will see how to…
 Create a Requestb.in
 Generate HTTP Requests using Postman
 Inspect requests in a Requestb.in

You May Need to Attach a Debugger
 Azure SDK provides this capability through the Server

Explorer interface inside of Visual Studio
 Remote debugging experience mirrors the local

debugging experience

What About Inspecting Execution Inside an API App?

Attaching a Debugger to an API App

Debugging a Deployed API
App

1. Open the Visual Studio
Solution containing the API
App

2. In Server Explorer, expand
Azure > App Service

3. Expand the Resource Group
containing the deployed API
App

4. Right-click the API App, and
then click Attach Debugger

5. Set breakpoints and debug
the API App as usual

Reviewing Testing and Debugging Concepts

HTTP Request

HTTP Response
API App

HTTP Request

HTTP Response
Client External

Resource

Postman can be
substituted to

generate desired
requests

Visual Studio can
attach remote
debugger to

monitor execution

Requestb.in can be
used to log

requests sent to
external resource

Demo: Building and Deploying Hello World

In this demonstration, you will see how to…
 Create a new API App project
 Define model classes
 Create a controller class
 Define routes
 Implement actions
 Publish and Test an API App

Lab 13A: Building Custom Action API Apps [75 min]

In this lab, you will…
 Create a custom action API App
 Install the TRex NuGet package
 Use the T-Rex Metadata Library to generate Swagger

metadata for API Apps
 Publish API Apps to Azure
 Build Logic Apps that use custom API Apps

	Introduction to Custom API Apps
	Lesson: Anatomy of an API App
	Azure App Service
	What Are API Apps?
	What Are API Apps?
	What is Swagger?
	What is Swashbuckle?
	Requirements for Creating a Custom API App
	Creating a Custom API App
	Examining the Azure API App Template
	Contents of an Azure API App Project
	Package References of an Azure API App Project
	Exploring the Swashbuckle Configuration
	Publishing an Azure API App
	Publishing an Azure API App
	Lesson 2: Fundamentals of Web API
	History of Web API
	Key Components of a Web API Application
	Creating a Controller (Code Example)
	Configuring Routes (Code Example)
	Returning Results
	Returning Results
	ApiController Extension Methods for Results
	Implementing Actions (Code Example)
	Testing HTTP GET Requests Against an API
	What Does Web API Do With My Request?
	Calling an Action – Raw HTTP Request
	Calling the Action – Raw HTTP Response
	Is This API RESTful?
	Designing RESTful API Apps
	Comparing RESTful and Non-RESTful Approach
	Supporting Multiple HTTP Verbs for RESTful APIs
	Supporting Multiple HTTP Verbs
	Lesson 3: Hello API App World
	Building Hello World API App
	Setting Up the Project
	Exposing Functionality to Logic Apps
	Introducing the T-Rex Metadata Library
	Setting Up the Project
	Setting Up the Project
	Building Hello World API App
	Why Create the Models First?
	Creating the Model Classes
	Creating the Model Classes
	Building Hello World API App
	Creating a Controller
	Building Hello World API App
	Defining the Actions
	Defining the Actions
	Defining the Actions
	Building Hello World API App
	“Gotchas” When Publishing API Apps to App Service
	Publishing the API App
	Publishing the API App
	Publishing the API App
	What Does My API App Look Like in the Designer?
	What Is the Raw Result of Execution?
	Lesson 4: Debugging API Apps
	Verifying Deployed API App Behavior
	Tools for Replicating HTTP Requests
	Inspecting HTTP Calls to External Resources
	Tools for Inspecting Inbound Requests
	Using Requestb.in to Examine Requests
	Using Requestbi.in to Examine API App Outputs
	Demo: Generating and Examining HTTP Requests
	What About Inspecting Execution Inside an API App?
	Attaching a Debugger to an API App
	Reviewing Testing and Debugging Concepts
	Demo: Building and Deploying Hello World
	Lab 13A: Building Custom Action API Apps [75 min]

